Computer Science > Computer Vision and Pattern Recognition
[Submitted on 20 Oct 2022]
Title:Transferring learned patterns from ground-based field imagery to predict UAV-based imagery for crop and weed semantic segmentation in precision crop farming
View PDFAbstract:Weed and crop segmentation is becoming an increasingly integral part of precision farming that leverages the current computer vision and deep learning technologies. Research has been extensively carried out based on images captured with a camera from various platforms. Unmanned aerial vehicles (UAVs) and ground-based vehicles including agricultural robots are the two popular platforms for data collection in fields. They all contribute to site-specific weed management (SSWM) to maintain crop yield. Currently, the data from these two platforms is processed separately, though sharing the same semantic objects (weed and crop). In our paper, we have developed a deep convolutional network that enables to predict both field and aerial images from UAVs for weed segmentation and mapping with only field images provided in the training phase. The network learning process is visualized by feature maps at shallow and deep layers. The results show that the mean intersection of union (IOU) values of the segmentation for the crop (maize), weeds, and soil background in the developed model for the field dataset are 0.744, 0.577, 0.979, respectively, and the performance of aerial images from an UAV with the same model, the IOU values of the segmentation for the crop (maize), weeds and soil background are 0.596, 0.407, and 0.875, respectively. To estimate the effect on the use of plant protection agents, we quantify the relationship between herbicide spraying saving rate and grid size (spraying resolution) based on the predicted weed map. The spraying saving rate is up to 90% when the spraying resolution is at 1.78 x 1.78 cm2. The study shows that the developed deep convolutional neural network could be used to classify weeds from both field and aerial images and delivers satisfactory results.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.