Computer Science > Computational Geometry
[Submitted on 21 Oct 2022 (v1), last revised 17 Mar 2023 (this version, v3)]
Title:On the Longest Flip Sequence to Untangle Segments in the Plane
View PDFAbstract:A set of segments in the plane may form a Euclidean TSP tour or a matching, among others. Optimal TSP tours as well as minimum weight perfect matchings have no crossing segments, but several heuristics and approximation algorithms may produce solutions with crossings. To improve such solutions, we can successively apply a flip operation that replaces a pair of crossing segments by non-crossing ones. This paper considers the maximum number D(n) of flips performed on n segments. First, we present reductions relating D(n) for different sets of segments (TSP tours, monochromatic matchings, red-blue matchings, and multigraphs). Second, we show that if all except t points are in convex position, then D(n) = O(tn^2), providing a smooth transition between the convex O(n^2) bound and the general O(n^3) bound. Last, we show that if instead of counting the total number of flips, we only count the number of distinct flips, then the cubic upper bound improves to O(n^{8/3}).
Submission history
From: Bastien Rivier [view email][v1] Fri, 21 Oct 2022 15:29:03 UTC (231 KB)
[v2] Fri, 2 Dec 2022 16:12:21 UTC (226 KB)
[v3] Fri, 17 Mar 2023 19:37:22 UTC (205 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.