Computer Science > Computation and Language
[Submitted on 21 Oct 2022]
Title:A Dataset for Plain Language Adaptation of Biomedical Abstracts
View PDFAbstract:Though exponentially growing health-related literature has been made available to a broad audience online, the language of scientific articles can be difficult for the general public to understand. Therefore, adapting this expert-level language into plain language versions is necessary for the public to reliably comprehend the vast health-related literature. Deep Learning algorithms for automatic adaptation are a possible solution; however, gold standard datasets are needed for proper evaluation. Proposed datasets thus far consist of either pairs of comparable professional- and general public-facing documents or pairs of semantically similar sentences mined from such documents. This leads to a trade-off between imperfect alignments and small test sets. To address this issue, we created the Plain Language Adaptation of Biomedical Abstracts dataset. This dataset is the first manually adapted dataset that is both document- and sentence-aligned. The dataset contains 750 adapted abstracts, totaling 7643 sentence pairs. Along with describing the dataset, we benchmark automatic adaptation on the dataset with state-of-the-art Deep Learning approaches, setting baselines for future research.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.