Computer Science > Graphics
[Submitted on 25 Oct 2022]
Title:Computing Medial Axis Transform with Feature Preservation via Restricted Power Diagram
View PDFAbstract:We propose a novel framework for computing the medial axis transform of 3D shapes while preserving their medial features via restricted power diagram (RPD). Medial features, including external features such as the sharp edges and corners of the input mesh surface and internal features such as the seams and junctions of medial axis, are important shape descriptors both topologically and geometrically. However, existing medial axis approximation methods fail to capture and preserve them due to the fundamentally under-sampling in the vicinity of medial features, and the difficulty to build their correct connections. In this paper we use the RPD of medial spheres and its affiliated structures to help solve these challenges. The dual structure of RPD provides the connectivity of medial spheres. The surface restricted power cell (RPC) of each medial sphere provides the tangential surface regions that these spheres have contact with. The connected components (CC) of surface RPC give us the classification of each sphere, to be on a medial sheet, a seam, or a junction. They allow us to detect insufficient sphere sampling around medial features and develop necessary conditions to preserve them. Using this RPD-based framework, we are able to construct high quality medial meshes with features preserved. Compared with existing sampling-based or voxel-based methods, our method is the first one that can preserve not only external features but also internal features of medial axes.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.