Computer Science > Computation and Language
[Submitted on 25 Oct 2022]
Title:XRICL: Cross-lingual Retrieval-Augmented In-Context Learning for Cross-lingual Text-to-SQL Semantic Parsing
View PDFAbstract:In-context learning using large language models has recently shown surprising results for semantic parsing tasks such as Text-to-SQL translation. Prompting GPT-3 or Codex using several examples of question-SQL pairs can produce excellent results, comparable to state-of-the-art finetuning-based models. However, existing work primarily focuses on English datasets, and it is unknown whether large language models can serve as competitive semantic parsers for other languages. To bridge this gap, our work focuses on cross-lingual Text-to-SQL semantic parsing for translating non-English utterances into SQL queries based on an English schema. We consider a zero-shot transfer learning setting with the assumption that we do not have any labeled examples in the target language (but have annotated examples in English). This work introduces the XRICL framework, which learns to retrieve relevant English exemplars for a given query to construct prompts. We also include global translation exemplars for a target language to facilitate the translation process for large language models. To systematically evaluate our model, we construct two new benchmark datasets, XSpider and XKaggle-dbqa, which include questions in Chinese, Vietnamese, Farsi, and Hindi. Our experiments show that XRICL effectively leverages large pre-trained language models to outperform existing baselines. Data and code are publicly available at this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.