Computer Science > Sound
[Submitted on 26 Oct 2022]
Title:Two-stage dimensional emotion recognition by fusing predictions of acoustic and text networks using SVM
View PDFAbstract:Automatic speech emotion recognition (SER) by a computer is a critical component for more natural human-machine interaction. As in human-human interaction, the capability to perceive emotion correctly is essential to take further steps in a particular situation. One issue in SER is whether it is necessary to combine acoustic features with other data such as facial expressions, text, and motion capture. This research proposes to combine acoustic and text information by applying a late-fusion approach consisting of two steps. First, acoustic and text features are trained separately in deep learning systems. Second, the prediction results from the deep learning systems are fed into a support vector machine (SVM) to predict the final regression score. Furthermore, the task in this research is dimensional emotion modeling because it can enable a deeper analysis of affective states. Experimental results show that this two-stage, late-fusion approach, obtains higher performance than that of any one-stage processing, with a linear correlation from one-stage to two-stage processing. This late-fusion approach improves previous early fusion results measured in concordance correlation coefficients score.
Submission history
From: Bagus Tris Atmaja Mr [view email][v1] Wed, 26 Oct 2022 05:49:13 UTC (800 KB)
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.