Computer Science > Sound
[Submitted on 27 Oct 2022 (v1), last revised 26 Apr 2023 (this version, v3)]
Title:Audio Signal Enhancement with Learning from Positive and Unlabelled Data
View PDFAbstract:Supervised learning is a mainstream approach to audio signal enhancement (SE) and requires parallel training data consisting of both noisy signals and the corresponding clean signals. Such data can only be synthesised and are mismatched with real data, which can result in poor performance on real data. Moreover, clean signals may be inaccessible in certain scenarios, which renders this conventional approach infeasible. Here we explore SE using non-parallel training data consisting of noisy signals and noise, which can be easily recorded. We define the positive (P) and the negative (N) classes as signal inactivity and activity, respectively. We observe that the spectrogram patches of noise clips can be used as P data and those of noisy signal clips as unlabelled data. Thus, learning from positive and unlabelled data enables a convolutional neural network to learn to classify each spectrogram patch as P or N to enable SE.
Submission history
From: Nobutaka Ito B.E. M.E. Ph.D. Prof. [view email][v1] Thu, 27 Oct 2022 03:07:47 UTC (2,658 KB)
[v2] Sun, 30 Oct 2022 06:30:19 UTC (2,063 KB)
[v3] Wed, 26 Apr 2023 15:03:33 UTC (1,449 KB)
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.