Computer Science > Artificial Intelligence
[Submitted on 3 Nov 2022 (v1), last revised 22 May 2023 (this version, v2)]
Title:Sensor Control for Information Gain in Dynamic, Sparse and Partially Observed Environments
View PDFAbstract:We present an approach for autonomous sensor control for information gathering under partially observable, dynamic and sparsely sampled environments that maximizes information about entities present in that space. We describe our approach for the task of Radio-Frequency (RF) spectrum monitoring, where the goal is to search for and track unknown, dynamic signals in the environment. To this end, we extend the Deep Anticipatory Network (DAN) Reinforcement Learning (RL) framework by (1) improving exploration in sparse, non-stationary environments using a novel information gain reward, and (2) scaling up the control space and enabling the monitoring of complex, dynamic activity patterns using hybrid convolutional-recurrent neural layers. We also extend this problem to situations in which sampling from the intended RF spectrum/field is limited and propose a model-based version of the original RL algorithm that fine-tunes the controller via a model that is iteratively improved from the limited field sampling. Results in simulated RF environments of differing complexity show that our system outperforms the standard DAN architecture and is more flexible and robust than baseline expert-designed agents. We also show that it is adaptable to non-stationary emission environments.
Submission history
From: Vidyasagar Sadhu [view email][v1] Thu, 3 Nov 2022 00:03:14 UTC (4,236 KB)
[v2] Mon, 22 May 2023 19:53:33 UTC (4,484 KB)
Current browse context:
cs.AI
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.