Electrical Engineering and Systems Science > Image and Video Processing
[Submitted on 11 Nov 2022]
Title:Feature-aggregated spatiotemporal spine surface estimation for wearable patch ultrasound volumetric imaging
View PDFAbstract:Clear identification of bone structures is crucial for ultrasound-guided lumbar interventions, but it can be challenging due to the complex shapes of the self-shadowing vertebra anatomy and the extensive background speckle noise from the surrounding soft tissue structures. Therefore, we propose to use a patch-like wearable ultrasound solution to capture the reflective bone surfaces from multiple imaging angles and create 3D bone representations for interventional guidance. In this work, we will present our method for estimating the vertebra bone surfaces by using a spatiotemporal U-Net architecture learning from the B-Mode image and aggregated feature maps of hand-crafted filters. The methods are evaluated on spine phantom image data collected by our proposed miniaturized wearable "patch" ultrasound device, and the results show that a significant improvement on baseline method can be achieved with promising accuracy. Equipped with this surface estimation framework, our wearable ultrasound system can potentially provide intuitive and accurate interventional guidance for clinicians in augmented reality setting.
Current browse context:
eess.IV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.