Computer Science > Robotics
[Submitted on 11 Nov 2022 (v1), last revised 18 Apr 2023 (this version, v2)]
Title:Active Task Randomization: Learning Robust Skills via Unsupervised Generation of Diverse and Feasible Tasks
View PDFAbstract:Solving real-world manipulation tasks requires robots to have a repertoire of skills applicable to a wide range of circumstances. When using learning-based methods to acquire such skills, the key challenge is to obtain training data that covers diverse and feasible variations of the task, which often requires non-trivial manual labor and domain knowledge. In this work, we introduce Active Task Randomization (ATR), an approach that learns robust skills through the unsupervised generation of training tasks. ATR selects suitable tasks, which consist of an initial environment state and manipulation goal, for learning robust skills by balancing the diversity and feasibility of the tasks. We propose to predict task diversity and feasibility by jointly learning a compact task representation. The selected tasks are then procedurally generated in simulation using graph-based parameterization. The active selection of these training tasks enables skill policies trained with our framework to robustly handle a diverse range of objects and arrangements at test time. We demonstrate that the learned skills can be composed by a task planner to solve unseen sequential manipulation problems based on visual inputs. Compared to baseline methods, ATR can achieve superior success rates in single-step and sequential manipulation tasks.
Submission history
From: Kuan Fang [view email][v1] Fri, 11 Nov 2022 11:24:55 UTC (8,507 KB)
[v2] Tue, 18 Apr 2023 07:34:55 UTC (8,606 KB)
Current browse context:
cs.RO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.