Computer Science > Computer Vision and Pattern Recognition
[Submitted on 14 Nov 2022 (v1), last revised 15 Feb 2023 (this version, v4)]
Title:SportsTrack: An Innovative Method for Tracking Athletes in Sports Scenes
View PDFAbstract:The SportsMOT dataset aims to solve multiple object tracking of athletes in different sports scenes such as basketball or soccer. The dataset is challenging because of the unstable camera view, athletes' complex trajectory, and complicated background. Previous MOT methods can not match enough high-quality tracks of athletes. To pursue higher performance of MOT in sports scenes, we introduce an innovative tracker named SportsTrack, we utilize tracking by detection as our detection paradigm. Then we will introduce a three-stage matching process to solve the motion blur and body overlapping in sports scenes. Meanwhile, we present another innovation point: one-to-many correspondence between detection bboxes and crowded tracks to handle the overlap of athletes' bodies during sports competitions. Compared to other trackers such as BOT-SORT and ByteTrack, We carefully restored edge-lost tracks that were ignored by other trackers. Finally, we reached the SOTA result in the SportsMOT dataset.
Submission history
From: Yuzhou Peng [view email][v1] Mon, 14 Nov 2022 08:09:38 UTC (24,629 KB)
[v2] Wed, 8 Feb 2023 03:23:39 UTC (24,583 KB)
[v3] Mon, 13 Feb 2023 08:48:41 UTC (29,654 KB)
[v4] Wed, 15 Feb 2023 03:25:30 UTC (29,654 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.