Electrical Engineering and Systems Science > Audio and Speech Processing
[Submitted on 14 Nov 2022 (v1), last revised 16 Aug 2024 (this version, v2)]
Title:Multi-Label Training for Text-Independent Speaker Identification
View PDF HTML (experimental)Abstract:In this paper, we propose a novel strategy for text-independent speaker identification system: Multi-Label Training (MLT). Instead of the commonly used one-to-one correspondence between the speech and the speaker label, we divide all the speeches of each speaker into several subgroups, with each subgroup assigned a different set of labels. During the identification process, a specific speaker is identified as long as the predicted label is the same as one of his/her corresponding labels. We found that this method can force the model to distinguish the data more accurately, and somehow takes advantages of ensemble learning, while avoiding the significant increase of computation and storage burden. In the experiments, we found that not only in clean conditions, but also in noisy conditions with speech enhancement, Multi-Label Training can still achieve better identification performance than commom methods. It should be noted that the proposed strategy can be easily applied to almost all current text-independent speaker identification models to achieve further improvements.
Submission history
From: Yuqi Xue [view email][v1] Mon, 14 Nov 2022 14:07:25 UTC (936 KB)
[v2] Fri, 16 Aug 2024 08:40:12 UTC (942 KB)
Current browse context:
eess.AS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.