Computer Science > Computation and Language
[Submitted on 15 Nov 2022]
Title:A Survey for Efficient Open Domain Question Answering
View PDFAbstract:Open domain question answering (ODQA) is a longstanding task aimed at answering factual questions from a large knowledge corpus without any explicit evidence in natural language processing (NLP). Recent works have predominantly focused on improving the answering accuracy and achieved promising progress. However, higher accuracy often comes with more memory consumption and inference latency, which might not necessarily be efficient enough for direct deployment in the real world. Thus, a trade-off between accuracy, memory consumption and processing speed is pursued. In this paper, we provide a survey of recent advances in the efficiency of ODQA models. We walk through the ODQA models and conclude the core techniques on efficiency. Quantitative analysis on memory cost, processing speed, accuracy and overall comparison are given. We hope that this work would keep interested scholars informed of the advances and open challenges in ODQA efficiency research, and thus contribute to the further development of ODQA efficiency.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.