Computer Science > Computation and Language
[Submitted on 15 Nov 2022]
Title:A Comparative Study of Question Answering over Knowledge Bases
View PDFAbstract:Question answering over knowledge bases (KBQA) has become a popular approach to help users extract information from knowledge bases. Although several systems exist, choosing one suitable for a particular application scenario is difficult. In this article, we provide a comparative study of six representative KBQA systems on eight benchmark datasets. In that, we study various question types, properties, languages, and domains to provide insights on where existing systems struggle. On top of that, we propose an advanced mapping algorithm to aid existing models in achieving superior results. Moreover, we also develop a multilingual corpus COVID-KGQA, which encourages COVID-19 research and multilingualism for the diversity of future AI. Finally, we discuss the key findings and their implications as well as performance guidelines and some future improvements. Our source code is available at \url{this https URL}.
Submission history
From: Thanh Tam Nguyen [view email][v1] Tue, 15 Nov 2022 14:23:47 UTC (1,375 KB)
Current browse context:
cs.CL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.