Computer Science > Machine Learning
[Submitted on 16 Nov 2022]
Title:Deep Intention-Aware Network for Click-Through Rate Prediction
View PDFAbstract:E-commerce platforms provide entrances for customers to enter mini-apps that can meet their specific shopping requirements. Trigger items displayed on entrance icons can attract more entering. However, conventional Click-Through-Rate (CTR) prediction models, which ignore user instant interest in trigger item, fail to be applied to the new recommendation scenario dubbed Trigger-Induced Recommendation in Mini-Apps (TIRA). Moreover, due to the high stickiness of customers to mini-apps, we argue that existing trigger-based methods that over-emphasize the importance of trigger items, are undesired for TIRA, since a large portion of customer entries are because of their routine shopping habits instead of triggers. We identify that the key to TIRA is to extract customers' personalized entering intention and weigh the impact of triggers based on this intention. To achieve this goal, we convert CTR prediction for TIRA into a separate estimation form, and present Deep Intention-Aware Network (DIAN) with three key elements: 1) Intent Net that estimates user's entering intention, i.e., whether he/she is affected by the trigger or by the habits; 2) Trigger-Aware Net and 3) Trigger-Free Net that estimate CTRs given user's intention is to the trigger-item and the mini-app respectively. Following a joint learning way, DIAN can both accurately predict user intention and dynamically balance the results of trigger-free and trigger-based recommendations based on the estimated intention. Experiments show that DIAN advances state-of-the-art performance in a large real-world dataset, and brings a 9.39% lift of online Item Page View and 4.74% CTR for Juhuasuan, a famous mini-app of Taobao.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.