Statistics > Machine Learning
[Submitted on 17 Nov 2022 (v1), last revised 14 Apr 2023 (this version, v2)]
Title:Monitoring machine learning (ML)-based risk prediction algorithms in the presence of confounding medical interventions
View PDFAbstract:Performance monitoring of machine learning (ML)-based risk prediction models in healthcare is complicated by the issue of confounding medical interventions (CMI): when an algorithm predicts a patient to be at high risk for an adverse event, clinicians are more likely to administer prophylactic treatment and alter the very target that the algorithm aims to predict. A simple approach is to ignore CMI and monitor only the untreated patients, whose outcomes remain unaltered. In general, ignoring CMI may inflate Type I error because (i) untreated patients disproportionally represent those with low predicted risk and (ii) evolution in both the model and clinician trust in the model can induce complex dependencies that violate standard assumptions. Nevertheless, we show that valid inference is still possible if one monitors conditional performance and if either conditional exchangeability or time-constant selection bias hold. Specifically, we develop a new score-based cumulative sum (CUSUM) monitoring procedure with dynamic control limits. Through simulations, we demonstrate the benefits of combining model updating with monitoring and investigate how over-trust in a prediction model may delay detection of performance deterioration. Finally, we illustrate how these monitoring methods can be used to detect calibration decay of an ML-based risk calculator for postoperative nausea and vomiting during the COVID-19 pandemic.
Submission history
From: Jean Feng [view email][v1] Thu, 17 Nov 2022 18:54:34 UTC (1,308 KB)
[v2] Fri, 14 Apr 2023 17:05:02 UTC (1,307 KB)
Current browse context:
stat.ML
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.