Physics > Physics and Society
[Submitted on 22 Nov 2022 (v1), last revised 17 Feb 2023 (this version, v2)]
Title:Network coevolution drives segregation and enhances Pareto optimal equilibrium selection in coordination games
View PDFAbstract:In this work we assess the role played by the dynamical adaptation of the interactions network, among agents playing Coordination Games, in reaching global coordination and in the equilibrium selection. Specifically, we analyze a coevolution model that couples the changes in agents' actions with the network dynamics, so that while agents play the game, they are able to sever some of their current connections and connect with others. We focus on two update rules: Replicator Dynamics (RD) and Unconditional Imitation (UI). We investigate a Pure Coordination Game (PCG), in which choices are equivalent, and on a General Coordination Game (GCG), for which there is a risk-dominant action and a payoff-dominant one. The network plasticity is measured by the probability to rewire links. Changing this plasticity parameter, there is a transition from a regime in which the system fully coordinates in a single connected component to a regime in which the system fragments in two connected components, each one coordinated on a different action (either if both actions are equivalent or not). The nature of this fragmentation transition is different for different update rules. Second, we find that both for RD and UI in a GCG, there is a regime of intermediate values of plasticity, before the fragmentation transition, for which the system is able to fully coordinate in a single component network on the payoff-dominant action, i. e., coevolution enhances payoff-dominant equilibrium selection for both update rules.
Submission history
From: Miguel A. González Casado [view email][v1] Tue, 22 Nov 2022 09:33:02 UTC (20,124 KB)
[v2] Fri, 17 Feb 2023 18:04:32 UTC (21,523 KB)
Current browse context:
physics.soc-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.