Computer Science > Machine Learning
[Submitted on 30 Nov 2022 (v1), last revised 5 Mar 2023 (this version, v2)]
Title:T2G-Former: Organizing Tabular Features into Relation Graphs Promotes Heterogeneous Feature Interaction
View PDFAbstract:Recent development of deep neural networks (DNNs) for tabular learning has largely benefited from the capability of DNNs for automatic feature interaction. However, the heterogeneity nature of tabular features makes such features relatively independent, and developing effective methods to promote tabular feature interaction still remains an open problem. In this paper, we propose a novel Graph Estimator, which automatically estimates the relations among tabular features and builds graphs by assigning edges between related features. Such relation graphs organize independent tabular features into a kind of graph data such that interaction of nodes (tabular features) can be conducted in an orderly fashion. Based on our proposed Graph Estimator, we present a bespoke Transformer network tailored for tabular learning, called T2G-Former, which processes tabular data by performing tabular feature interaction guided by the relation graphs. A specific Cross-level Readout collects salient features predicted by the layers in T2G-Former across different levels, and attains global semantics for final prediction. Comprehensive experiments show that our T2G-Former achieves superior performance among DNNs and is competitive with non-deep Gradient Boosted Decision Tree models.
Submission history
From: Jiahuan Yan [view email][v1] Wed, 30 Nov 2022 10:39:24 UTC (453 KB)
[v2] Sun, 5 Mar 2023 10:01:57 UTC (457 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.