Computer Science > Computer Vision and Pattern Recognition
[Submitted on 6 Dec 2022 (v1), last revised 5 Feb 2023 (this version, v3)]
Title:AbHE: All Attention-based Homography Estimation
View PDFAbstract:Homography estimation is a basic computer vision task, which aims to obtain the transformation from multi-view images for image alignment. Unsupervised learning homography estimation trains a convolution neural network for feature extraction and transformation matrix regression. While the state-of-theart homography method is based on convolution neural networks, few work focuses on transformer which shows superiority in highlevel vision tasks. In this paper, we propose a strong-baseline model based on the Swin Transformer, which combines convolution neural network for local features and transformer module for global features. Moreover, a cross non-local layer is introduced to search the matched features within the feature maps coarsely. In the homography regression stage, we adopt an attention layer for the channels of correlation volume, which can drop out some weak correlation feature points. The experiment shows that in 8 Degree-of-Freedoms(DOFs) homography estimation our method overperforms the state-of-the-art method.
Submission history
From: Mingxiao Huo [view email][v1] Tue, 6 Dec 2022 15:00:00 UTC (187 KB)
[v2] Wed, 7 Dec 2022 02:04:41 UTC (187 KB)
[v3] Sun, 5 Feb 2023 18:41:36 UTC (4,388 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.