Electrical Engineering and Systems Science > Audio and Speech Processing
[Submitted on 8 Dec 2022 (v1), last revised 2 Mar 2023 (this version, v2)]
Title:Framewise WaveGAN: High Speed Adversarial Vocoder in Time Domain with Very Low Computational Complexity
View PDFAbstract:GAN vocoders are currently one of the state-of-the-art methods for building high-quality neural waveform generative models. However, most of their architectures require dozens of billion floating-point operations per second (GFLOPS) to generate speech waveforms in samplewise manner. This makes GAN vocoders still challenging to run on normal CPUs without accelerators or parallel computers. In this work, we propose a new architecture for GAN vocoders that mainly depends on recurrent and fully-connected networks to directly generate the time domain signal in framewise manner. This results in considerable reduction of the computational cost and enables very fast generation on both GPUs and low-complexity CPUs. Experimental results show that our Framewise WaveGAN vocoder achieves significantly higher quality than auto-regressive maximum-likelihood vocoders such as LPCNet at a very low complexity of 1.2 GFLOPS. This makes GAN vocoders more practical on edge and low-power devices.
Submission history
From: Ahmed Mustafa [view email][v1] Thu, 8 Dec 2022 19:38:34 UTC (155 KB)
[v2] Thu, 2 Mar 2023 00:45:49 UTC (155 KB)
Current browse context:
eess.AS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.