Mathematics > Numerical Analysis
[Submitted on 14 Dec 2022]
Title:BelNet: Basis enhanced learning, a mesh-free neural operator
View PDFAbstract:Operator learning trains a neural network to map functions to functions. An ideal operator learning framework should be mesh-free in the sense that the training does not require a particular choice of discretization for the input functions, allows for the input and output functions to be on different domains, and is able to have different grids between samples. We propose a mesh-free neural operator for solving parametric partial differential equations. The basis enhanced learning network (BelNet) projects the input function into a latent space and reconstructs the output functions. In particular, we construct part of the network to learn the ``basis'' functions in the training process. This generalized the networks proposed in Chen and Chen's universal approximation theory for the nonlinear operators to account for differences in input and output meshes. Through several challenging high-contrast and multiscale problems, we show that our approach outperforms other operator learning methods for these tasks and allows for more freedom in the sampling and/or discretization process.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.