Computer Science > Machine Learning
[Submitted on 16 Dec 2022]
Title:Addressing Data Heterogeneity in Decentralized Learning via Topological Pre-processing
View PDFAbstract:Recently, local peer topology has been shown to influence the overall convergence of decentralized learning (DL) graphs in the presence of data heterogeneity. In this paper, we demonstrate the advantages of constructing a proxy-based locally heterogeneous DL topology to enhance convergence and maintain data privacy. In particular, we propose a novel peer clumping strategy to efficiently cluster peers before arranging them in a final training graph. By showing how locally heterogeneous graphs outperform locally homogeneous graphs of similar size and from the same global data distribution, we present a strong case for topological pre-processing. Moreover, we demonstrate the scalability of our approach by showing how the proposed topological pre-processing overhead remains small in large graphs while the performance gains get even more pronounced. Furthermore, we show the robustness of our approach in the presence of network partitions.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.