Mathematics > Numerical Analysis
[Submitted on 19 Dec 2022]
Title:A defect-correction algorithm for quadratic matrix equations, with applications to quasi-Toeplitz matrices
View PDFAbstract:A defect correction formula for quadratic matrix equations of the kind $A_1X^2+A_0X+A_{-1}=0$ is presented. This formula, expressed by means of an invariant subspace of a suitable pencil, allows us to introduce a modification of the Structure-preserving Doubling Algorithm (SDA), that enables refining an initial approximation to the sought solution. This modification provides substantial advantages, in terms of convergence acceleration, in the solution of equations coming from stochastic models, by choosing a stochastic matrix as the initial approximation. An application to solving random walks in the quarter plane is shown, where the coefficients $A_{-1},A_0,A_1$ are quasi-Toeplitz matrices of infinite size.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.