Computer Science > Cryptography and Security
[Submitted on 28 Dec 2022]
Title:XMAM:X-raying Models with A Matrix to Reveal Backdoor Attacks for Federated Learning
View PDFAbstract:Federated Learning (FL) has received increasing attention due to its privacy protection capability. However, the base algorithm FedAvg is vulnerable when it suffers from so-called backdoor attacks. Former researchers proposed several robust aggregation methods. Unfortunately, many of these aggregation methods are unable to defend against backdoor attacks. What's more, the attackers recently have proposed some hiding methods that further improve backdoor attacks' stealthiness, making all the existing robust aggregation methods fail.
To tackle the threat of backdoor attacks, we propose a new aggregation method, X-raying Models with A Matrix (XMAM), to reveal the malicious local model updates submitted by the backdoor attackers. Since we observe that the output of the Softmax layer exhibits distinguishable patterns between malicious and benign updates, we focus on the Softmax layer's output in which the backdoor attackers are difficult to hide their malicious behavior. Specifically, like X-ray examinations, we investigate the local model updates by using a matrix as an input to get their Softmax layer's outputs. Then, we preclude updates whose outputs are abnormal by clustering. Without any training dataset in the server, the extensive evaluations show that our XMAM can effectively distinguish malicious local model updates from benign ones. For instance, when other methods fail to defend against the backdoor attacks at no more than 20% malicious clients, our method can tolerate 45% malicious clients in the black-box mode and about 30% in Projected Gradient Descent (PGD) mode. Besides, under adaptive attacks, the results demonstrate that XMAM can still complete the global model training task even when there are 40% malicious clients. Finally, we analyze our method's screening complexity, and the results show that XMAM is about 10-10000 times faster than the existing methods.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.