Computer Science > Networking and Internet Architecture
[Submitted on 14 Dec 2022]
Title:ENGNN: A General Edge-Update Empowered GNN Architecture for Radio Resource Management in Wireless Networks
View PDFAbstract:In order to achieve high data rate and ubiquitous connectivity in future wireless networks, a key task is to efficiently manage the radio resource by judicious beamforming and power allocation. Unfortunately, the iterative nature of the commonly applied optimization-based algorithms cannot meet the low latency requirements due to the high computational complexity. For real-time implementations, deep learning-based approaches, especially the graph neural networks (GNNs), have been demonstrated with good scalability and generalization performance due to the permutation equivariance (PE) property. However, the current architectures are only equipped with the node-update mechanism, which prohibits the applications to a more general setup, where the unknown variables are also defined on the graph edges. To fill this gap, we propose an edge-update mechanism, which enables GNNs to handle both node and edge variables and prove its PE property with respect to both transmitters and receivers. Simulation results on typical radio resource management problems demonstrate that the proposed method achieves higher sum rate but with much shorter computation time than state-of-the-art methods and generalizes well on different numbers of base stations and users, different noise variances, interference levels, and transmit power budgets.
Current browse context:
cs.NI
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.