Mathematics > Numerical Analysis
[Submitted on 5 Jan 2023]
Title:An adaptive solution strategy for Richards' equation
View PDFAbstract:Flow in variably saturated porous media is typically modelled by the Richards equation, a nonlinear elliptic-parabolic equation which is notoriously challenging to solve numerically. In this paper, we propose a robust and fast iterative solver for Richards' equation. The solver relies on an adaptive switching algorithm, based on rigorously derived a posteriori indicators, between two linearization methods: L-scheme and Newton. Although a combined L-scheme/Newton strategy was introduced previously in [List & Radu (2016)], here, for the first time we propose a reliable and robust criteria for switching between these schemes. The performance of the solver, which can be in principle applied to any spatial discretization and linearization methods, is illustrated through several numerical examples.
Submission history
From: Koondanibha Mitra PhD [view email][v1] Thu, 5 Jan 2023 13:10:53 UTC (67 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.