Computer Science > Sound
[Submitted on 7 Jan 2023 (v1), last revised 12 Dec 2023 (this version, v3)]
Title:TunesFormer: Forming Irish Tunes with Control Codes by Bar Patching
View PDF HTML (experimental)Abstract:This paper introduces TunesFormer, an efficient Transformer-based dual-decoder model specifically designed for the generation of melodies that adhere to user-defined musical forms. Trained on 214,122 Irish tunes, TunesFormer utilizes techniques including bar patching and control codes. Bar patching reduces sequence length and generation time, while control codes guide TunesFormer in producing melodies that conform to desired musical forms. Our evaluation demonstrates TunesFormer's superior efficiency, being 3.22 times faster than GPT-2 and 1.79 times faster than a model with linear complexity of equal scale while offering comparable performance in controllability and other metrics. TunesFormer provides a novel tool for musicians, composers, and music enthusiasts alike to explore the vast landscape of Irish music. Our model and code are available at this https URL.
Submission history
From: Shangda Wu [view email][v1] Sat, 7 Jan 2023 16:11:55 UTC (542 KB)
[v2] Sun, 20 Aug 2023 07:28:16 UTC (519 KB)
[v3] Tue, 12 Dec 2023 13:47:44 UTC (356 KB)
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.