Computer Science > Information Retrieval
[Submitted on 10 Jan 2023]
Title:Why People Skip Music? On Predicting Music Skips using Deep Reinforcement Learning
View PDFAbstract:Music recommender systems are an integral part of our daily life. Recent research has seen a significant effort around black-box recommender based approaches such as Deep Reinforcement Learning (DRL). These advances have led, together with the increasing concerns around users' data collection and privacy, to a strong interest in building responsible recommender systems. A key element of a successful music recommender system is modelling how users interact with streamed content. By first understanding these interactions, insights can be drawn to enable the construction of more transparent and responsible systems. An example of these interactions is skipping behaviour, a signal that can measure users' satisfaction, dissatisfaction, or lack of interest. In this paper, we study the utility of users' historical data for the task of sequentially predicting users' skipping behaviour. To this end, we adapt DRL for this classification task, followed by a post-hoc explainability (SHAP) and ablation analysis of the input state representation. Experimental results from a real-world music streaming dataset (Spotify) demonstrate the effectiveness of our approach in this task by outperforming state-of-the-art models. A comprehensive analysis of our approach and of users' historical data reveals a temporal data leakage problem in the dataset. Our findings indicate that, overall, users' behaviour features are the most discriminative in how our proposed DRL model predicts music skips. Content and contextual features have a lesser effect. This suggests that a limited amount of user data should be collected and leveraged to predict skipping behaviour.
Submission history
From: Francesco Meggetto [view email][v1] Tue, 10 Jan 2023 10:07:29 UTC (659 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.