Computer Science > Data Structures and Algorithms
[Submitted on 13 Jan 2023]
Title:Differentially Private Continual Releases of Streaming Frequency Moment Estimations
View PDFAbstract:The streaming model of computation is a popular approach for working with large-scale data. In this setting, there is a stream of items and the goal is to compute the desired quantities (usually data statistics) while making a single pass through the stream and using as little space as possible.
Motivated by the importance of data privacy, we develop differentially private streaming algorithms under the continual release setting, where the union of outputs of the algorithm at every timestamp must be differentially private. Specifically, we study the fundamental $\ell_p$ $(p\in [0,+\infty))$ frequency moment estimation problem under this setting, and give an $\varepsilon$-DP algorithm that achieves $(1+\eta)$-relative approximation $(\forall \eta\in(0,1))$ with $\mathrm{poly}\log(Tn)$ additive error and uses $\mathrm{poly}\log(Tn)\cdot \max(1, n^{1-2/p})$ space, where $T$ is the length of the stream and $n$ is the size of the universe of elements. Our space is near optimal up to poly-logarithmic factors even in the non-private setting.
To obtain our results, we first reduce several primitives under the differentially private continual release model, such as counting distinct elements, heavy hitters and counting low frequency elements, to the simpler, counting/summing problems in the same setting. Based on these primitives, we develop a differentially private continual release level set estimation approach to address the $\ell_p$ frequency moment estimation problem.
We also provide a simple extension of our results to the harder sliding window model, where the statistics must be maintained over the past $W$ data items.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.