Computer Science > Data Structures and Algorithms
[Submitted on 17 Jan 2023 (v1), last revised 11 Jul 2023 (this version, v2)]
Title:Algorithms for Acyclic Weighted Finite-State Automata with Failure Arcs
View PDFAbstract:Weighted finite-state automata (WSFAs) are commonly used in NLP. Failure transitions are a useful extension for compactly representing backoffs or interpolation in $n$-gram models and CRFs, which are special cases of WFSAs. The pathsum in ordinary acyclic WFSAs is efficiently computed by the backward algorithm in time $O(|E|)$, where $E$ is the set of transitions. However, this does not allow failure transitions, and preprocessing the WFSA to eliminate failure transitions could greatly increase $|E|$. We extend the backward algorithm to handle failure transitions directly. Our approach is efficient when the average state has outgoing arcs for only a small fraction $s \ll 1$ of the alphabet $\Sigma$. We propose an algorithm for general acyclic WFSAs which runs in $O{\left(|E| + s |\Sigma| |Q| T_\text{max} \log{|\Sigma|}\right)}$, where $Q$ is the set of states and $T_\text{max}$ is the size of the largest connected component of failure transitions. When the failure transition topology satisfies a condition exemplified by CRFs, the $T_\text{max}$ factor can be dropped, and when the weight semiring is a ring, the $\log{|\Sigma|}$ factor can be dropped. In the latter case (ring-weighted acyclic WFSAs), we also give an alternative algorithm with complexity $\displaystyle O{\left(|E| + |\Sigma| |Q| \min(1,s\pi_\text{max}) \right)}$, where $\pi_\text{max}$ is the size of the longest failure path.
Submission history
From: Anej Svete [view email][v1] Tue, 17 Jan 2023 13:15:44 UTC (169 KB)
[v2] Tue, 11 Jul 2023 09:08:33 UTC (148 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.