Computer Science > Machine Learning
[Submitted on 26 Jan 2023 (v1), last revised 4 Mar 2024 (this version, v6)]
Title:Domain-Agnostic Molecular Generation with Chemical Feedback
View PDF HTML (experimental)Abstract:The generation of molecules with desired properties has become increasingly popular, revolutionizing the way scientists design molecular structures and providing valuable support for chemical and drug design. However, despite the potential of language models in molecule generation, they face challenges such as generating syntactically or chemically flawed molecules, having narrow domain focus, and struggling to create diverse and feasible molecules due to limited annotated data or external molecular databases. To tackle these challenges, we introduce MolGen, a pre-trained molecular language model tailored specifically for molecule generation. Through the reconstruction of over 100 million molecular SELFIES, MolGen internalizes structural and grammatical insights. This is further enhanced by domain-agnostic molecular prefix tuning, fostering robust knowledge transfer across diverse domains. Importantly, our chemical feedback paradigm steers the model away from molecular hallucinations, ensuring alignment between the model's estimated probabilities and real-world chemical preferences. Extensive experiments on well-known benchmarks underscore MolGen's optimization capabilities in properties such as penalized logP, QED, and molecular docking. Additional analyses confirm its proficiency in accurately capturing molecule distributions, discerning intricate structural patterns, and efficiently exploring the chemical space. Code is available at this https URL.
Submission history
From: Ningyu Zhang [view email][v1] Thu, 26 Jan 2023 17:52:56 UTC (6,277 KB)
[v2] Sun, 29 Jan 2023 08:37:17 UTC (6,206 KB)
[v3] Thu, 18 May 2023 06:56:50 UTC (9,676 KB)
[v4] Fri, 1 Sep 2023 07:50:44 UTC (12,410 KB)
[v5] Mon, 2 Oct 2023 15:17:34 UTC (14,703 KB)
[v6] Mon, 4 Mar 2024 12:54:34 UTC (15,612 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.