Computer Science > Computation and Language
[Submitted on 30 Jan 2023 (v1), last revised 28 May 2023 (this version, v2)]
Title:Knowledge Transfer from Pre-trained Language Models to Cif-based Speech Recognizers via Hierarchical Distillation
View PDFAbstract:Large-scale pre-trained language models (PLMs) have shown great potential in natural language processing tasks. Leveraging the capabilities of PLMs to enhance automatic speech recognition (ASR) systems has also emerged as a promising research direction. However, previous works may be limited by the inflexible structures of PLMs and the insufficient utilization of PLMs. To alleviate these problems, we propose the hierarchical knowledge distillation (HKD) on the continuous integrate-and-fire (CIF) based ASR models. To transfer knowledge from PLMs to the ASR models, HKD employs cross-modal knowledge distillation with contrastive loss at the acoustic level and knowledge distillation with regression loss at the linguistic level. Compared with the original CIF-based model, our method achieves 15% and 9% relative error rate reduction on the AISHELL-1 and LibriSpeech datasets, respectively.
Submission history
From: Minglun Han [view email][v1] Mon, 30 Jan 2023 15:44:55 UTC (315 KB)
[v2] Sun, 28 May 2023 16:13:52 UTC (491 KB)
Current browse context:
cs.CL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.