Computer Science > Software Engineering
[Submitted on 1 Feb 2023]
Title:On the Robustness of Code Generation Techniques: An Empirical Study on GitHub Copilot
View PDFAbstract:Software engineering research has always being concerned with the improvement of code completion approaches, which suggest the next tokens a developer will likely type while coding. The release of GitHub Copilot constitutes a big step forward, also because of its unprecedented ability to automatically generate even entire functions from their natural language description. While the usefulness of Copilot is evident, it is still unclear to what extent it is robust. Specifically, we do not know the extent to which semantic-preserving changes in the natural language description provided to the model have an effect on the generated code function. In this paper we present an empirical study in which we aim at understanding whether different but semantically equivalent natural language descriptions result in the same recommended function. A negative answer would pose questions on the robustness of deep learning (DL)-based code generators since it would imply that developers using different wordings to describe the same code would obtain different recommendations. We asked Copilot to automatically generate 892 Java methods starting from their original Javadoc description. Then, we generated different semantically equivalent descriptions for each method both manually and automatically, and we analyzed the extent to which predictions generated by Copilot changed. Our results show that modifying the description results in different code recommendations in ~46% of cases. Also, differences in the semantically equivalent descriptions might impact the correctness of the generated code ~28%.
Submission history
From: Antonio Mastropaolo [view email][v1] Wed, 1 Feb 2023 13:36:53 UTC (2,872 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.