Computer Science > Computer Vision and Pattern Recognition
[Submitted on 29 Dec 2022]
Title:Transformers in Action Recognition: A Review on Temporal Modeling
View PDFAbstract:In vision-based action recognition, spatio-temporal features from different modalities are used for recognizing activities. Temporal modeling is a long challenge of action recognition. However, there are limited methods such as pre-computed motion features, three-dimensional (3D) filters, and recurrent neural networks (RNN) for modeling motion information in deep-based approaches. Recently, transformers success in modeling long-range dependencies in natural language processing (NLP) tasks has gotten great attention from other domains; including speech, image, and video, to rely entirely on self-attention without using sequence-aligned RNNs or convolutions. Although the application of transformers to action recognition is relatively new, the amount of research proposed on this topic within the last few years is astounding. This paper especially reviews recent progress in deep learning methods for modeling temporal variations. It focuses on action recognition methods that use transformers for temporal modeling, discussing their main features, used modalities, and identifying opportunities and challenges for future research.
Submission history
From: Elham Shabaninia [view email][v1] Thu, 29 Dec 2022 11:03:19 UTC (3,015 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.