Computer Science > Cryptography and Security
[Submitted on 3 Feb 2023 (v1), last revised 22 Sep 2023 (this version, v3)]
Title:DeTorrent: An Adversarial Padding-only Traffic Analysis Defense
View PDFAbstract:While anonymity networks like Tor aim to protect the privacy of their users, they are vulnerable to traffic analysis attacks such as Website Fingerprinting (WF) and Flow Correlation (FC). Recent implementations of WF and FC attacks, such as Tik-Tok and DeepCoFFEA, have shown that the attacks can be effectively carried out, threatening user privacy. Consequently, there is a need for effective traffic analysis defense.
There are a variety of existing defenses, but most are either ineffective, incur high latency and bandwidth overhead, or require additional infrastructure. As a result, we aim to design a traffic analysis defense that is efficient and highly resistant to both WF and FC attacks. We propose DeTorrent, which uses competing neural networks to generate and evaluate traffic analysis defenses that insert 'dummy' traffic into real traffic flows. DeTorrent operates with moderate overhead and without delaying traffic. In a closed-world WF setting, it reduces an attacker's accuracy by 61.5%, a reduction 10.5% better than the next-best padding-only defense. Against the state-of-the-art FC attacker, DeTorrent reduces the true positive rate for a $10^{-5}$ false positive rate to about .12, which is less than half that of the next-best defense. We also demonstrate DeTorrent's practicality by deploying it alongside the Tor network and find that it maintains its performance when applied to live traffic.
Submission history
From: James Holland [view email][v1] Fri, 3 Feb 2023 21:40:56 UTC (2,842 KB)
[v2] Thu, 9 Mar 2023 01:33:26 UTC (3,461 KB)
[v3] Fri, 22 Sep 2023 22:12:27 UTC (3,008 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.