Mathematics > Numerical Analysis
[Submitted on 5 Feb 2023]
Title:Error analysis of the implicit variable-step BDF2 method for the molecular beam epitaxial model with slope selection
View PDFAbstract:We derive unconditionally stable and convergent variable-step BDF2 scheme for solving the MBE model with slope selection. The discrete orthogonal convolution kernels of the variable-step BDF2 method is commonly utilized recently for solving the phase field models. In this paper, we further prove some new inequalities, concerning the vector forms, for the kernels especially dealing with the nonlinear terms in the slope selection model. The convergence rate of the fully discrete scheme is proved to be two both in time and space in $L^2$ norm under the setting of the variable time steps. Energy dissipation law is proved rigorously with a modified energy by adding a small term to the discrete version of the original free energy functional. Two numerical examples including an adaptive time-stepping strategy are given to verify the convergence rate and the energy dissipation law.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.