Computer Science > Machine Learning
[Submitted on 10 Feb 2023]
Title:On the Interventional Kullback-Leibler Divergence
View PDFAbstract:Modern machine learning approaches excel in static settings where a large amount of i.i.d. training data are available for a given task. In a dynamic environment, though, an intelligent agent needs to be able to transfer knowledge and re-use learned components across domains. It has been argued that this may be possible through causal models, aiming to mirror the modularity of the real world in terms of independent causal mechanisms. However, the true causal structure underlying a given set of data is generally not identifiable, so it is desirable to have means to quantify differences between models (e.g., between the ground truth and an estimate), on both the observational and interventional level.
In the present work, we introduce the Interventional Kullback-Leibler (IKL) divergence to quantify both structural and distributional differences between models based on a finite set of multi-environment distributions generated by interventions from the ground truth. Since we generally cannot quantify all differences between causal models for every finite set of interventional distributions, we propose a sufficient condition on the intervention targets to identify subsets of observed variables on which the models provably agree or disagree.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.