Computer Science > Computer Vision and Pattern Recognition
[Submitted on 17 Feb 2023]
Title:Random Padding Data Augmentation
View PDFAbstract:The convolutional neural network (CNN) learns the same object in different positions in images, which can improve the recognition accuracy of the model. An implication of this is that CNN may know where the object is. The usefulness of the features' spatial information in CNNs has not been well investigated. In this paper, we found that the model's learning of features' position information hindered the learning of the features' relationship. Therefore, we introduced Random Padding, a new type of padding method for training CNNs that impairs the architecture's capacity to learn position information by adding zero-padding randomly to half of the border of feature maps. Random Padding is parameter-free, simple to construct, and compatible with the majority of CNN-based recognition models. This technique is also complementary to data augmentations such as random cropping, rotation, flipping and erasing, and consistently improves the performance of image classification over strong baselines.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.