Mathematics > Optimization and Control
[Submitted on 17 Feb 2023 (v1), last revised 9 Aug 2023 (this version, v2)]
Title:A Hybrid Submodular Optimization Approach to Controlled Islanding with Post-Disturbance Stability Guarantees
View PDFAbstract:Disturbances may create cascading failures in power systems and lead to widespread blackouts. Controlled islanding is an effective approach to mitigate cascading failures by partitioning the power system into a set of disjoint islands. To retain the stability of the power system following disturbances, the islanding strategy should not only be minimally disruptive, but also guarantee post-disturbance stability. In this paper, we study the problem of synthesizing post-disturbance stability-aware controlled islanding strategies. To ensure post-disturbance stability, our computation of islanding strategies takes load-generation balance and transmission line capacity constraints into consideration, leading to a hybrid optimization problem with both discrete and continuous variables. To mitigate the computational challenge incurred when solving the hybrid optimization program, we propose the concepts of hybrid submodularity and hybrid matroid. We show that the islanding problem is equivalent to a hybrid matroid optimization program, whose objective function is hybrid supermodular. Leveraging the supermodularity property, we develop an efficient local search algorithm and show that the proposed algorithm achieves 1/2-optimality guarantee. We compare our approach with a baseline using mixed-integer linear program on IEEE 118-bus, IEEE 300-bus, ActivSg 500-bus, and Polish 2383-bus systems. Our results show that our approach outperforms the baseline in terms of the total cost incurred during islanding across all test cases. Furthermore, our proposed approach can find an islanding strategy for large-scale test cases such as Polish 2383-bus system, whereas the baseline approach becomes intractable.
Submission history
From: Luyao Niu [view email][v1] Fri, 17 Feb 2023 06:29:35 UTC (1,368 KB)
[v2] Wed, 9 Aug 2023 22:48:05 UTC (8,977 KB)
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.