Electrical Engineering and Systems Science > Audio and Speech Processing
[Submitted on 22 Feb 2023 (v1), last revised 3 May 2023 (this version, v2)]
Title:Gradient Remedy for Multi-Task Learning in End-to-End Noise-Robust Speech Recognition
View PDFAbstract:Speech enhancement (SE) is proved effective in reducing noise from noisy speech signals for downstream automatic speech recognition (ASR), where multi-task learning strategy is employed to jointly optimize these two tasks. However, the enhanced speech learned by SE objective may not always yield good ASR results. From the optimization view, there sometimes exists interference between the gradients of SE and ASR tasks, which could hinder the multi-task learning and finally lead to sub-optimal ASR performance. In this paper, we propose a simple yet effective approach called gradient remedy (GR) to solve interference between task gradients in noise-robust speech recognition, from perspectives of both angle and magnitude. Specifically, we first project the SE task's gradient onto a dynamic surface that is at acute angle to ASR gradient, in order to remove the conflict between them and assist in ASR optimization. Furthermore, we adaptively rescale the magnitude of two gradients to prevent the dominant ASR task from being misled by SE gradient. Experimental results show that the proposed approach well resolves the gradient interference and achieves relative word error rate (WER) reductions of 9.3% and 11.1% over multi-task learning baseline, on RATS and CHiME-4 datasets, respectively. Our code is available at GitHub.
Submission history
From: Yuchen Hu [view email][v1] Wed, 22 Feb 2023 13:31:13 UTC (624 KB)
[v2] Wed, 3 May 2023 05:06:51 UTC (852 KB)
Current browse context:
eess.AS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.