Computer Science > Machine Learning
[Submitted on 27 Feb 2023 (v1), last revised 15 Aug 2023 (this version, v2)]
Title:Semantic-aware Node Synthesis for Imbalanced Heterogeneous Information Networks
View PDFAbstract:Heterogeneous graph neural networks (HGNNs) have exhibited exceptional efficacy in modeling the complex heterogeneity in heterogeneous information networks (HINs). The critical advantage of HGNNs is their ability to handle diverse node and edge types in HINs by extracting and utilizing the abundant semantic information for effective representation learning. However, as a widespread phenomenon in many real-world scenarios, the class-imbalance distribution in HINs creates a performance bottleneck for existing HGNNs. Apart from the quantity imbalance of nodes, another more crucial and distinctive challenge in HINs is semantic imbalance. Minority classes in HINs often lack diverse and sufficient neighbor nodes, resulting in biased and incomplete semantic information. This semantic imbalance further compounds the difficulty of accurately classifying minority nodes, leading to the performance degradation of HGNNs. To tackle the imbalance of minority classes and supplement their inadequate semantics, we present the first method for the semantic imbalance problem in imbalanced HINs named Semantic-aware Node Synthesis (SNS). By assessing the influence on minority classes, SNS adaptively selects the heterogeneous neighbor nodes and augments the network with synthetic nodes while preserving the minority semantics. In addition, we introduce two regularization approaches for HGNNs that constrain the representation of synthetic nodes from both semantic and class perspectives to effectively suppress the potential noises from synthetic nodes, facilitating more expressive embeddings for classification. The comprehensive experimental study demonstrates that SNS consistently outperforms existing methods by a large margin in different benchmark datasets.
Submission history
From: Xinyi Gao [view email][v1] Mon, 27 Feb 2023 00:21:43 UTC (174 KB)
[v2] Tue, 15 Aug 2023 09:43:14 UTC (237 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.