Electrical Engineering and Systems Science > Systems and Control
[Submitted on 27 Feb 2023]
Title:Combating Uncertainties in Wind and Distributed PV Energy Sources Using Integrated Reinforcement Learning and Time-Series Forecasting
View PDFAbstract:Renewable energy sources, such as wind and solar power, are increasingly being integrated into smart grid systems. However, when compared to traditional energy resources, the unpredictability of renewable energy generation poses significant challenges for both electricity providers and utility companies. Furthermore, the large-scale integration of distributed energy resources (such as PV systems) creates new challenges for energy management in microgrids. To tackle these issues, we propose a novel framework with two objectives: (i) combating uncertainty of renewable energy in smart grid by leveraging time-series forecasting with Long-Short Term Memory (LSTM) solutions, and (ii) establishing distributed and dynamic decision-making framework with multi-agent reinforcement learning using Deep Deterministic Policy Gradient (DDPG) algorithm. The proposed framework considers both objectives concurrently to fully integrate them, while considering both wholesale and retail markets, thereby enabling efficient energy management in the presence of uncertain and distributed renewable energy sources. Through extensive numerical simulations, we demonstrate that the proposed solution significantly improves the profit of load serving entities (LSE) by providing a more accurate wind generation forecast. Furthermore, our results demonstrate that households with PV and battery installations can increase their profits by using intelligent battery charge/discharge actions determined by the DDPG agents.
Submission history
From: Amin Shojaeighadikolaei [view email][v1] Mon, 27 Feb 2023 19:12:50 UTC (6,421 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.