Computer Science > Hardware Architecture
[Submitted on 2 Mar 2023]
Title:Q2Logic: An Coarse-Grained Architecture targeting Schrödinger Quantum Circuit Simulations
View PDFAbstract:Quantum computing is emerging as an important (but radical) technology that might take us beyond Moore's law for certain applications. Today, in parallel with improving quantum computers, computer scientists are relying heavily on quantum circuit simulators to develop algorithms. Most existing quantum circuit simulators run on general-purpose CPUs or GPUs. However, at the same time, quantum circuits themselves offer multiple opportunities for parallelization, some of which could map better to other architecture -- architectures such as reconfigurable systems. In this early work, we created a quantum circuit simulator system called Q2Logic. Q2Logic is a coarse-grained reconfigurable architecture (CGRA) implemented as an overlay on Field-Programmable Gate Arrays (FPGAs), but specialized towards quantum simulations. We described how Q2Logic has been created and reveal implementation details, limitations, and opportunities. We end the study by empirically comparing the performance of Q2Logic (running on a Intel Agilex FPGA) against the state-of-the-art framework SVSim (running on a modern processor), showing improvements in three large circuits (#qbit=27), where Q2Logic can be up-to ~7x faster.
Submission history
From: Artur Podobas PhD [view email][v1] Thu, 2 Mar 2023 22:06:23 UTC (1,045 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.