Computer Science > Machine Learning
[Submitted on 3 Mar 2023]
Title:Node-Specific Space Selection via Localized Geometric Hyperbolicity in Graph Neural Networks
View PDFAbstract:Many graph neural networks have been developed to learn graph representations in either Euclidean or hyperbolic space, with all nodes' representations embedded in a single space. However, a graph can have hyperbolic and Euclidean geometries at different regions of the graph. Thus, it is sub-optimal to indifferently embed an entire graph into a single space. In this paper, we explore and analyze two notions of local hyperbolicity, describing the underlying local geometry: geometric (Gromov) and model-based, to determine the preferred space of embedding for each node. The two hyperbolicities' distributions are aligned using the Wasserstein metric such that the calculated geometric hyperbolicity guides the choice of the learned model hyperbolicity. As such our model Joint Space Graph Neural Network (JSGNN) can leverage both Euclidean and hyperbolic spaces during learning by allowing node-specific geometry space selection. We evaluate our model on both node classification and link prediction tasks and observe promising performance compared to baseline models.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.