Computer Science > Computer Vision and Pattern Recognition
[Submitted on 3 Mar 2023]
Title:Confidence-driven Bounding Box Localization for Small Object Detection
View PDFAbstract:Despite advancements in generic object detection, there remains a performance gap in detecting small objects compared to normal-scale objects. We for the first time observe that existing bounding box regression methods tend to produce distorted gradients for small objects and result in less accurate localization. To address this issue, we present a novel Confidence-driven Bounding Box Localization (C-BBL) method to rectify the gradients. C-BBL quantizes continuous labels into grids and formulates two-hot ground truth labels. In prediction, the bounding box head generates a confidence distribution over the grids. Unlike the bounding box regression paradigms in conventional detectors, we introduce a classification-based localization objective through cross entropy between ground truth and predicted confidence distribution, generating confidence-driven gradients. Additionally, C-BBL describes a uncertainty loss based on distribution entropy in labels and predictions to further reduce the uncertainty in small object localization. The method is evaluated on multiple detectors using three object detection benchmarks and consistently improves baseline detectors, achieving state-of-the-art performance. We also demonstrate the generalizability of C-BBL to different label systems and effectiveness for high resolution detection, which validates its prospect as a general solution.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.