Computer Science > Machine Learning
[Submitted on 6 Mar 2023]
Title:Benchmark of Data Preprocessing Methods for Imbalanced Classification
View PDFAbstract:Severe class imbalance is one of the main conditions that make machine learning in cybersecurity difficult. A variety of dataset preprocessing methods have been introduced over the years. These methods modify the training dataset by oversampling, undersampling or a combination of both to improve the predictive performance of classifiers trained on this dataset. Although these methods are used in cybersecurity occasionally, a comprehensive, unbiased benchmark comparing their performance over a variety of cybersecurity problems is missing. This paper presents a benchmark of 16 preprocessing methods on six cybersecurity datasets together with 17 public imbalanced datasets from other domains. We test the methods under multiple hyperparameter configurations and use an AutoML system to train classifiers on the preprocessed datasets, which reduces potential bias from specific hyperparameter or classifier choices. Special consideration is also given to evaluating the methods using appropriate performance measures that are good proxies for practical performance in real-world cybersecurity systems. The main findings of our study are: 1) Most of the time, a data preprocessing method that improves classification performance exists. 2) Baseline approach of doing nothing outperformed a large portion of methods in the benchmark. 3) Oversampling methods generally outperform undersampling methods. 4) The most significant performance gains are brought by the standard SMOTE algorithm and more complicated methods provide mainly incremental improvements at the cost of often worse computational performance.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.