Mathematics > Optimization and Control
[Submitted on 7 Mar 2023 (v1), last revised 13 Mar 2023 (this version, v2)]
Title:Enhanced Adaptive Gradient Algorithms for Nonconvex-PL Minimax Optimization
View PDFAbstract:In the paper, we study a class of nonconvex nonconcave minimax optimization problems (i.e., $\min_x\max_y f(x,y)$), where $f(x,y)$ is possible nonconvex in $x$, and it is nonconcave and satisfies the Polyak-Lojasiewicz (PL) condition in $y$. Moreover, we propose a class of enhanced momentum-based gradient descent ascent methods (i.e., MSGDA and AdaMSGDA) to solve these stochastic Nonconvex-PL minimax problems. In particular, our AdaMSGDA algorithm can use various adaptive learning rates in updating the variables $x$ and $y$ without relying on any global and coordinate-wise adaptive learning rates. Theoretically, we present an effective convergence analysis framework for our methods. Specifically, we prove that our MSGDA and AdaMSGDA methods have the best known sample (gradient) complexity of $O(\epsilon^{-3})$ only requiring one sample at each loop in finding an $\epsilon$-stationary solution (i.e., $\mathbb{E}\|\nabla F(x)\|\leq \epsilon$, where $F(x)=\max_y f(x,y)$). This manuscript commemorates the mathematician Boris Polyak (1935-2023).
Submission history
From: Feihu Huang [view email][v1] Tue, 7 Mar 2023 15:33:12 UTC (18 KB)
[v2] Mon, 13 Mar 2023 15:11:48 UTC (18 KB)
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.