Computer Science > Computer Vision and Pattern Recognition
[Submitted on 9 Mar 2023]
Title:Blind deblurring of hyperspectral document images
View PDFAbstract:Most computer vision and machine learning-based approaches for historical document analysis are tailored to grayscale or RGB images and thus, mostly exploit their spatial information. Multispectral (MS) and hyperspectral (HS) images contain, next to the spatial information, much richer spectral information than RGB images (usually spreading beyond the visible spectral range) that can facilitate more effective feature extraction, more accurate classification and recognition, and thus, improved analysis. Although utilization of rich spectral information can improve historical document analysis tremendously, there are still some potential limitations of HS imagery such as camera-induced noise and blur that require a carefully designed preprocessing step. Here, we propose novel blind HS image deblurring methods tailored to document images. We exploit a low-rank property of HS images (i.e., by projecting an HS image to a lower dimensional subspace) and utilize a text tailor image prior to performing a PSF estimation and deblurring of subspace components. The preliminary results show that the proposed approach gives good results over all spectral bands, removing successfully image artefacts introduced by blur and noise and significantly increasing the number of bands that can be used in further analysis.
Submission history
From: Marina Ljubenovic [view email][v1] Thu, 9 Mar 2023 09:31:13 UTC (9,298 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.