Computer Science > Human-Computer Interaction
[Submitted on 11 Mar 2023]
Title:An Interactive UI to Support Sensemaking over Collections of Parallel Texts
View PDFAbstract:Scientists and science journalists, among others, often need to make sense of a large number of papers and how they compare with each other in scope, focus, findings, or any other important factors. However, with a large corpus of papers, it's cognitively demanding to pairwise compare and contrast them all with each other. Fully automating this review process would be infeasible, because it often requires domain-specific knowledge, as well as understanding what the context and motivations for the review are. While there are existing tools to help with the process of organizing and annotating papers for literature reviews, at the core they still rely on people to serially read through papers and manually make sense of relevant information.
We present AVTALER, which combines peoples' unique skills, contextual awareness, and knowledge, together with the strength of automation. Given a set of comparable text excerpts from a paper corpus, it supports users in sensemaking and contrasting paper attributes by interactively aligning text excerpts in a table so that comparable details are presented in a shared column. AVTALER is based on a core alignment algorithm that makes use of modern NLP tools. Furthermore, AVTALER is a mixed-initiative system: users can interactively give the system constraints which are integrated into the alignment construction process.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.