Electrical Engineering and Systems Science > Image and Video Processing
[Submitted on 13 Mar 2023]
Title:Deep Learning-based Eye-Tracking Analysis for Diagnosis of Alzheimer's Disease Using 3D Comprehensive Visual Stimuli
View PDFAbstract:Alzheimer's Disease (AD) causes a continuous decline in memory, thinking, and judgment. Traditional diagnoses are usually based on clinical experience, which is limited by some realistic factors. In this paper, we focus on exploiting deep learning techniques to diagnose AD based on eye-tracking behaviors. Visual attention, as typical eye-tracking behavior, is of great clinical value to detect cognitive abnormalities in AD patients. To better analyze the differences in visual attention between AD patients and normals, we first conduct a 3D comprehensive visual task on a non-invasive eye-tracking system to collect visual attention heatmaps. We then propose a multi-layered comparison convolution neural network (MC-CNN) to distinguish the visual attention differences between AD patients and normals. In MC-CNN, the multi-layered representations of heatmaps are obtained by hierarchical convolution to better encode eye-movement behaviors, which are further integrated into a distance vector to benefit the comprehensive visual task. Extensive experimental results on the collected dataset demonstrate that MC-CNN achieves consistent validity in classifying AD patients and normals with eye-tracking data.
Current browse context:
eess.IV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.